Alma e Rosetta sulle tracce del fosforo

Questa infografica mostra i risultati chiave di uno studio che ha rivelato la traccia interstellare del fosforo, uno dei mattoni costitutivi della vita. Crediti: Alma (Eso/Naoj/Nrao), Rivilla et al.; Eso/L. Calçada; Esa/Rosetta/NavCam; Mario Weigand, www.SkyTrip.de

«La vita è apparsa sulla Terra circa 4 miliardi di anni fa, ma non conosciamo ancora i processi che l’hanno resa possibile», dice Víctor Rivilla, autore principale di un nuovo studio pubblicato oggi dalla rivista Monthly Notices of the Royal Astronomical Society. I nuovi risultati di Alma (Atacama Large Millimeter/Submillimeter Array), di cui l’Osservatorio europeo australe (Eso) è partner, e dello strumento Rosina a bordo di Rosetta mostrano che il monossido di fosforo è un elemento chiave nel rompicapo sull’origine della vita.

Con la potenza di Alma, che ha permesso uno sguardo dettagliato nella regione di formazione stellare Afgl 5142, gli astronomi sono stati in grado di individuare i luoghi in cui si formano molecole contenenti fosforo, come il monossido di fosforo. Nuove stelle e sistemi planetari sorgono in regioni, simili a nubi, formate da gas e polvere sparsi tra le stelle, rendendo queste nubi interstellari i luoghi ideali da cui iniziare la ricerca dei mattoni costitutivi della vita.

Le osservazioni Alma hanno mostrato che le molecole che contengono fosforo vengono create quando si formano stelle massicce. Flussi di gas da stelle giovani e massicce scavano cavità nelle nubi interstellari. Le molecole contenenti fosforo si formano sulle pareti della cavità, attraverso l’azione combinata di urti e radiazioni della giovane stella. Gli astronomi hanno anche dimostrato che il monossido di fosforo è la molecola più abbondante sulle pareti della cavità, tra tutte le molecole contenenti fosforo.

Dopo aver cercato questa molecola nelle regioni di formazione stellare con Alma, il gruppo europeo è passato a un oggetto del Sistema Solare: l’ormai famosa cometa 67P/Churyumov–Gerasimenko. L’idea era di seguire le tracce di questi composti contenenti fosforo. Se le pareti della cavità collassano per formare una stella, in particolare una non particolarmente massiccia, come il Sole, il monossido di fosforo può congelarsi e rimanere intrappolato nei granelli di polvere ghiacciata che rimangono intorno alla nuova stella. Ancor prima che la stella sia completamente formata, i granelli di polvere si uniscono per formare sassolini, rocce e infine comete, che diventano così trasportatori di monossido di fosforo.

Rosina, acronimo che sta per Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, ha raccolto dati da 67P per due anni, mentre Rosetta era in orbita intorno alla cometa. Gli astronomi avevano già trovato tracce di fosforo nei dati di Rosina, ma non sapevano di quale molecola si trattasse. Kathrin Altwegg, principal investigator di Rosina e co-autrice del nuovo studio, ha avuto un suggerimento su quale potesse essere questa molecola dopo essere stata avvicinata a una conferenza da un’astronoma che studiava con Alma le regioni di formazione stellare: «Mi disse che il monossido di fosforo sarebbe un candidato molto probabile, quindi sono tornata a verificare i nostri dati ed eccolo lì!».

La regione di formazione stellare Afgl 5142vista da Alma. Crediti: Alma (Eso/Naoj/Nrao), Rivilla et al.

Questo primo avvistamento del monossido di fosforo su una cometa aiuta gli astronomi a stabilire una connessione tra le regioni di formazione stellare, dove la molecola viene creata, fino alla Terra.

«La combinazione dei dati di Alma e di Rosina ha rivelato una sorta di filo chimico durante l’intero processo di formazione stellare, in cui il monossido di fosforo svolge il ruolo dominante», spiega Rivilla, ricercatore all’Osservatorio astrofisico di arcetri dell’Inaf, l’Istituto nazionale di astrofisica italiano.

«Il fosforo è essenziale per la vita come la conosciamo», aggiunge Altwegg. «Dato che le comete hanno probabilmente fornito grandi quantità di composti organici alla Terra, il monossido di fosforo trovato nella cometa 67P potrebbe rafforzare il legame tra le comete e la vita sulla Terra».

Questo affascinante viaggio ha potuto essere documentato grazie alla collaborazione tra astronomi. «Il rilevamento del monossido di fosforo è stato chiaramente ottenuto grazie a uno scambio interdisciplinare tra telescopi sulla Terra e strumenti nello spazio», commenta Altwegg.

Leonardo Testi, astronomo dell’Eso e responsabile europeo delle operazioni di Alma, conclude: «Comprendere le nostre origini cosmiche, tra cui quanto siano comuni le condizioni chimiche favorevoli all’emergenza della vita, è uno dei temi principali dell’astrofisica moderna. Mentre Eso e Alma si concentrano sulle osservazioni di molecole in giovani sistemi planetari distanti, l’esplorazione diretta dell’inventario chimico all’interno del Sistema solare è resa possibile dalle missioni Esa, come Rosetta. La sinergia tra le strutture terrestri e spaziali all’avanguardi a livello mondiale, attraverso la collaborazione tra Eso ed Esa, è una risorsa preziosa per i ricercatori europei e consente scoperte rivoluzionarie come quella riportata in questo articolo».

Fonte: comunicato stampa Eso

Per saperne di più:

Quando la bistabilità climatica fa bene alla vita

Rappresentazione artistica di una “snowball Earth”. Crediti: Nasa

Negli ultimi decenni, la scoperta di svariate migliaia di sistemi planetari, ovvero stelle attorno alle quali è stato possibile determinare l’esistenza di uno o più pianeti, ha nauralmente portato gli astrofisici a chiedersi se tali pianeti siano adatti a ospitare la vita – e, soprattutto, se lo facciano. Usando i futuri grandi telescopi – da terra, come l’Extremely Large Telescope, e dallo spazio, come il James Webb Space Telescope – sarà possibile determinare la composizione chimica delle atmosfere dei pianeti più simili al nostro, e quindi cercarvi una biosignature: la “firma” chimica dell’esistenza di una biosfera sviluppata, come la nostra. Tuttavia, si tratta di misure alquanto delicate, che richiederanno lunghi tempi d’osservazione: non sarà quindi possibile compierle per tutti i pianeti promettenti.

Il gruppo di astrobiologia – del quale fanno parte Giovanni Vladilo, Giuseppe Murante, Laura Silva, Michele Maris, Giuliano Taffoni e Stavro Ivanowski – dell’Osservatorio astronomico dell’Inaf di Trieste, in collaborazione con i climatologi Elisa Palazzi e Jost von Hardenberg del Cnr-Isac di Torino e Antonello Provenzale del Cnr Igg di Pisa, ha sviluppato un semplice modello climatologico teorico in grado di determinare la temperatura superficiale di esopianeti rocciosi in funzione dei loro vari parametri astrofisici, planetologici e atmosferici. La temperatura superficiale dipende criticamente dal clima del pianeta: basti pensare che, senza atmosfera e clima, la temperatura media della Terra sarebbe circa di -18 gradi °C, mentre grazie alla loro esistenza si aggira attorno ai 14,5 °C. Ora, considerando che la presenza di acqua allo stato liquido è di fondamentale importanza per la vita come noi la conosciamo, nel primo caso la Terra sarebbe formalmente considerata non abitabile. Lo scopo principale di modelli come quello sviluppato dai ricercatori dell’Inaf e del Cnr è proprio quello di determinare quali pianeti extrasolari abbiano maggiore probabilità di essere abitabili, e dunque siano più interessanti da osservare con i futuri strumenti.

Occorre però tenere presente che, nel corso dell’esistenza del nostro pianeta, si sono verificate fasi climatiche in cui la Terra è stata ricoperta – completamente o quasi – dal ghiaccio. Durante questi periodi, chiamati dagli scienziati fasi snowball (palla di neve), la biosfera sopravvive, quasi interamente ricoperta da una spessa coltre di ghiaccio, sotto forma di organismi unicellulari, senza lasciare tracce rilevabili di sé nell’atmosfera.

Confronto fra abitabilità e bistabilità al variare di alcuni parametri del modello (pressione vs. semiasse maggiore nel riquadro in alto, eccentricità vs. semiasse maggiore nel riquadro in basso). I punti rappresentano le soluzioni bistabili, e il loro colore indica (seguendo la codifica della barra verticale) la probabilità di avere una “snowball”. La mappa dei colori indica invece il parametro di abitabilità (tra zero e uno) per la vita complessa, usando la codifica della barra orizzontale e ottenuto usando la definizione di Silva et al. (2016). Pannello superiore: pressione contro semi-maggiore Asse. Pannello inferiore: eccentricità vs. asse semi-maggiore. Crediti: G. Murante et al., Mnras, 2019

In un lavoro in corso di pubblicazione su Monthly Notices of the Royal Accademical Society, il team di astrobiologia dell’Inaf e del Cnr, guidato da Giuseppe Murante, ha utilizzato il modello sviluppato per studiare l’abitabilità e il clima di teorici pianeti molto simili alla Terra, tranne che per alcuni parametri orbitali (eccentricità e semiasse maggiore dell’orbita) e planetologici (pressione atmosferica superficiale e inclinazione dell’asse di rotazione). In pratica, hanno preso la Terra e ne hanno determinato il clima ipotetico alterandone alcune caratteristiche: per esempio, cosa acadrebbe se si trovasse più vicina o più lontana dal Sole? E se la sua orbita fosse molto più eccentrica, o la pressione dell’atmosfera molto più alta, o molto più bassa?

Combinano in vario modo questi parametri, sono state realizzate quasi 100mila simulazioni numeriche. In questo primo lavoro, il gruppo si è focalizzato su un aspetto ben preciso: determinare se, dato un pianeta, il suo clima ammetta un solo “stato” o ne ammetta invece diversi a seconda della sua temperatura superficiale di partenza. Per esempio, un clima temperato come quello terrestre attuale è uno stato climatico, mentre un mondo ghiacciato come una snowball rappresenta uno stato climatico differente.

Ciò equivale a chiedersi: se per qualche motivo la temperatura del pianeta salisse o si abbassasse sensibilmente, di decine di gradi, il clima sarebbe in grado di auto-stabilizzarsi? O otterremmo una condizione del tutto diversa? Il modello, al tempo stesso, ha consentto ai ricercatori del gruppo di quantificare l’abitabilità dei pianeti ipotetici, così come la frazione della loro superficie – in base alle stagioni dell’anno e alle temperature di partenza – che presenterebbe una temperatura compresa tra 0 e 50 gradi °C. D’altronde, anche la Terra non è tutta abitabile: per esempio, le regioni interne di alcuni deserti possono essere, in determinate stagioni, troppo calde o troppo fredde, e la zona interna dell’Antartide è troppo fredda per l’intera durtata dell’anno.

Il risultato ottenuto dal team è stato la determinazione (nell’ambito di validità del modello) della percentuale di casi in cui il clima ammette un solo stato – solo temperato, o solo congelato – o entrambi gli stati. In modo non del tutto atteso, è emerso che i pianeti teorici con maggiore abitabilità sono anche quelli che ammettono due stati climatici – vale a dire, anche quello congelato.

Si tratta di una correlazione nuova, per questo settore, e le sue implicazioni sono ancora tutte da investigare. Ma già da ora il gruppo di scienziati è in grado di applicare il modello a esopianeti “veri” – quelli effettivamente osservati – e di determinare quali siano i più indicati per cercare nella loro atmosfera le firme della vita. Ed è altresì in grado di affermare che, se tali firme non si trovassero, non vorrebbe necessariamente dire che la vita non c’è: potrebbe trovarsi ibernata sotto una spessa crosta di ghiaccio.

Per saperne di più:

  • Leggi il preprint dell’articolo in uscita su Monthly Notices of the Royal Accademical Society “Climate bistability of Earth-like exoplanets“, di Murante G., Provenzale A., Vladilo G., Taffoni G., Silv L., Palazzi E., Hardenberg J., Maris M., Londero E., Knapic C. e Zorba S.